The topoisomerase II inhibitor VM-26 induces marked changes in histone H1 kinase activity, histones H1 and H3 phosphorylation, and chromosome condensation in G2 phase and mitotic BHK cells

نویسندگان

  • M Roberge
  • J Th'ng
  • J Hamaguchi
  • E M Bradbury
چکیده

We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM-26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26-induced G2 arrest of the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calyculin A induces prematurely condensed chromosomes without histone H1 phosphorylation in mammalian G1-phase cells

It is shown here that one can induce prematurely condensed chromosomes (PCCs) in G1-phase human (HeLa) and mouse (FT210) cells by treating them with the protein phosphatase inhibitor calyculin A. However, histone H1 is not phosphorylated in these G1-PCCs. It has previously been proposed that histone H1 phosphorylation is responsible for mitotic chromosome condensation, but our results suggest t...

متن کامل

Core histone N-termini play an essential role in mitotic chromosome condensation.

We have studied the role of core histone tails in the assembly of mitotic chromosomes using Xenopus egg extracts. Incubation of sperm nuclei in the extracts led to the formation of mitotic chromosomes, a process we found to be correlated with phosphorylation of the N-terminal tail of histone H3 at Ser10. When the extracts were supplemented with H1-depleted oligosomes, they were not able to asse...

متن کامل

Staurosporine overrides checkpoints for mitotic onset in BHK cells.

Under normal conditions, mammalian cells will not initiate mitosis in the presence of either unreplicated or damaged DNA. We report here that staurosporine, a tumor promoter and potent protein kinase inhibitor, can uncouple mitosis from the completion of DNA replication and override DNA damage-induced G2 delay. Syrian hamster (BHK) fibroblasts that were arrested in S phase underwent premature m...

متن کامل

Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation.

The temporal and spatial patterns of histone H3 phosphorylation implicate a specific role for this modification in mammalian chromosome condensation. Cells arrest in late G2 when H3 phosphorylation is competitively inhibited by microinjecting excess substrate at mid-S-phase, suggesting a requirement for activity of the kinase that phosphorylates H3 during the initiation of chromosome condensati...

متن کامل

Topoisomerase II, scaffold component, promotes chromatin compaction in vitro in a linker-histone H1-dependent manner

TopoisomeraseII (Topo II) is a major component of chromosomal scaffolds and essential for mitotic chromosome condensation, but the mechanism of this action remains unknown. Here, we used an in vitro chromatin reconstitution system in combination with atomic force and fluorescence microscopic analyses to determine how Topo II affects chromosomal structure. Topo II bound to bare DNA and clamped t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 111  شماره 

صفحات  -

تاریخ انتشار 1990